State Estimation
1. Linear Kalman Filter
Experimental Evaluation of Simple Estimators for Humanoid Robots
Reference_Repo
Method
State $X = { Base_{pos}, Base_{vel_lin}, P_1, P_{n}, … }$
Base position and linear velocity and Contact positions (Humanoid: 2, Quadruped: 4)
Measurement $Y = {P_1, P_2, … , V_1, V_2, …, H_1, …, }$
P : Position vector for each foot.
V : Velocity vector for each foot.
H : Height of foot.
Update $F, G, Q$ from time.
Prediction
\(\hat{X}_0 = X_{init} \\
X' = F\hat{X}_n + Gu_n \\
P' = FP_nF^{\top} + Q\)
Update $H_n, R, Y$ from Pinocchio.
Update section
\(Y_{error} = Y - H_nX'^{\top} \\
S_n = H_nP'H_n^{\top} + R \\
G_{kalman} = P'H_n^{\top}S_n^{-1}\)
2. Extended Kalman Filter
State Estimation for Legged Robots - Consistent Fusion of Leg Kinematics and IMU
Leave a Comment
Your email address will not be published. Required fields are marked *